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EXECUTIVE OVERVIEW

The previous deliverable identified translation as the
key to automating test oracle generation. This
document presents the design of such a translation
component. In the DS-1 RAX work that preceded
this center initiative, use of a procedural translator
raised challenges of creation,
understanding, revision and
enhancement. This design
seeks to circumvent these
problems.

1 CONTEXT
Figure 1 (repeated from
[Feather & Smith 1999])
shows the architectural
context of the translator. The
inputs to the translator are
constraints and type checking
rules expressed in the
planner-specific notation.
Outputs from the translator
are database queries which,

when executed by the database engine against a
database loaded with plan data, will determine
whether those constraints and rules hold of that plan.
The two notations (planner-specific, and database
specific) differ significantly, and the primary purpose
of the translator is to bridge this language gap.

In practice, there is need for more than simply a
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yes/no answer to the question of whether all the
constraints and rules hold of a plan. There are three
aspects to the more detailed information that is
required for this kind of plan checking:

• Further subdividing the overall yes/no answer into
several answers, one for each constraint/rule, and,
at an even more detail, one for each location
within the plan where a constraint/rule is
applicable.

• Providing details on how a particular constraint
was satisfied, or not, as the case may be.

• Further subdividing the assumptions under which
the answer applies (e.g., the plan satisfies this
constraint provided that the immediately
following plan satisfies the following
condition… ).

It is the simultaneous accommodation of these
concerns that makes the automated generation of a
plan checker test oracle a non-trivial activity. The
bulk of work on generation of test oracles does not
take these concerns into account.

2 REQUIREMENTS

The requirements for this design are as follows:

• Automation – the translation must be fully
automatic.

• Speed – the translator must be tolerably efficient
in its task of converting constraints and type

checking rules into the analysis code. (The current
procedurally coded translator takes on the order of
10 minutes to translate the entire DS-1 RAX
constraint set).

• Understandability – the translation logic should
be in a form that spacecraft experts can inspect
and review.

• Modifiability/Extensibility – the translator should
admit to relatively easy maintenance.

The procedurally coded translator that was developed
and applied in the course of RAX plan checking met
the first two requirements, but fell short of the last
two.

3 TRANSLATOR DESIGN
ARCHITECTURE

The overall architecture is sketched in Figure 2. The
translation from constraints and type checking rules
into database queries and the scaffolding code that
surrounds them is to be accomplished by a
transformation system.

Transformation systems have been an active area of
research since the 1970s. For surveys of the early
days, see [Partsch & Steinbruggen 1983; Feather
1986]. Research in this area continues, for example, a
workshop took place in conjunction with this year’s
International Conference on Software Engineering
[STS workshop, 1999], while commercial support for
and application of transformation is increasing, for
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example [Reasoning SDK™ ].

The advantage of this design is that transformation
systems separate the transformations themselves from
their execution. Typically, a generic transformation
engine performs the execution, driven by four inputs.
At development time, the developer provides
grammars of the input and output languages of the
transformation and a set of declarative transformation
rules that direct the translation process. At run time,
the object to be transformed (expressed in the input
grammar) is input, and the transformation engine
applies the transformation rules to effect the
transformation. This separation of the transformation
rules from the engine that applies them is key. It
encourages and facilitates a more declarative style of
expression, with consequent advantages of
understandability and maintainability.

In our case, the transformation purpose is to translate
between languages. The input language is the planner-
specific language for expression of constraints and
type checking rules. The output language is the
analysis-specific language for checking the adherence
of the plan to those constraints and rules. We are
using a database as the analysis engine, so the
database query language is at the heart of the required
form of output. In practice, a significant amount of
“scaffolding” code must accompany the database
queries (e.g., to direct report generation).

Specifically:

• The plans we are dealing with are written in the
language of the HSTS planner as used in DS-1’s
Remote Agent Experiment [RAX 1999].

• The database we are using for analysis is AP5
[Cohen 1989] a research-quality advanced
database tool developed at the University of
Southern California.

• The output grammar is this Lisp, augmented by
AP5’s query capabilities (akin to first-order
predicate logic over a relational database).

4 DESIGN INSTANTIATION

The transformation system we plan to use is POPART
[Wile 1999]. POPART is well suited to prototyping
“Domain Specific Languages”, into which category
the planner language and the AP5 query language

squarely fall.

POPART is representative of the rule-based
transformation systems that employ declarative,
textual expressions of the transformation rules
themselves. Fortuitously, POPART implemented on
top of the same language base (Lisp) as the AP5
analysis engine. This makes development and
integration of the translator a simpler process than
would be the case if disparate languages and language
environments were involved.

5 FULFILMENT OF REQUIREMENTS

The identified requirements will be fulfilled by this
design as follows:

• Automation – once primed (at development time)
with grammars and transformation rules,
POPART’s run-time transformation will
accomplish the translation completely
automatically.

• Speed – the switch from a procedurally coded
translator to using POPART’s translation engine
primed with rules may incur some degradation of
performance. Note, however, that re-translation of
the constraint set is a relatively infrequent
operation (in the DS-1 development, there were
four releases of the constraint set, spread over the
course of several months). A modest degree of
performance degradation can therefore be
tolerated.

• Understandability – the declarative form of
transformation rules has long been recognized as
a virtue from the viewpoint of understandability.
[Reyes & Richardson, 1998] use declarative
transformation to translate from formal
specifications to test oracles of the
implementations of those specifications. We take
this as encouraging evidence of the viability of
this approach in the testing arena.

• Modifiability/Extensibility – the procedural code
was difficult to modify or extend. In contrast, the
declarative rules by their very nature encapsulate
the translation concerns more effectively and
succinctly. As a result, all forms of maintenance
will be facilitated by this design.
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6 ALTERNATIVE DESIGN
INSTANTIATION

POPART, like the vast majority of transformation
systems, uses primarily textual representations of
transformation rules and their organization.

An alternative style of translation is to structure and
view the overall translator organization as a dataflow-
like diagram. This is the approach under investigation
in a concurrent Center Initiative, “Automatic Software
Code Generator For Spacecraft Fault Protection &
Monitors”, Task Lead - Nicolas Rouquette.

It would be revealing to implement our particular
translation task in both design alternatives (textual
and dataflow), so as to emerge with the best result.
Likely we will not have the time to do this
completely, but experiments with fragments of the
overall translation might be both feasible and
illuminating.
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